渔业资源评估和管理研修班(第一轮通知)

发布时间:2015-03-10

浏览次数:90

一、目的

渔业资源评估是开展科学渔业管理的基础。为了提高我国渔业科学工作者的理论水平与应用能力,以促进我国渔业资源评估研究水平的提升,推动我国渔业资源评估和管理研究的进一步发展。上海海洋大学国际海洋研究中心、大洋渔业资源可持续开发省部共建教育部重点实验室联合举办渔业资源评估和管理研修班,为我国渔业科学工作者建立一个学习和交流的平台。本次研修班分成两个阶段,第一阶段为基础提高班,第二阶段为高级应用班。

 

二、招收对象

    基础提高班:从事渔业资源研究的青年科学工作者、研究生等;

    高级应用班:参加过基础提高班,或者在渔业资源评估和管理方面具有一定工作经验的科研和管理人员,以及相关研究生。

 

三、招收人数

    基础提高班:40

    高级应用班:45

 

四、研修日期

    基础提高班:2015414-16

    高级应用班:初步定在20159月(5天)

 

五、授课方式

    采用教师主讲、互动交流和计算机实例操作(自备笔记本电脑)等方式,授课材料为英文,授课语言为中文。

 

六、主讲教师

    1、首席主讲教师:陈勇教授,上海海洋大学国际海洋研究中心首席科学家、美国缅因大学终身教授、《Canadian Journal of Fisheries and Aquatic Sciences》主编、国际著名渔业资源专家。

    2、主讲教师:陈新军教授、官文江副教授和田思泉副教授。

 

七、主要内容

 

基础提高班

 

Part 1:  Statistic analyses commonly used in fisheries (review and introduction)

(1) Sampling distribution: theoretical and empirical distribution, and summary statistics;

(2) Computation-intensive methods: Monte Carlo method, bootstrap method;

(3) Confidence intervals: classic method and computation-intensive methods;

(4) Linear and nonlinear regression analyses;

(5) Error structures in modeling and their implications;

(6) General liner model (GLM) and general additive model (GAM);

(7) Introduction of R programming language

 

Part 2: Survey/sampling design and relevant data analyses

(1)   Random design;

(2)   Stratified random design;

(3)   Systematic design;

(4)   Cluster design;

(5)   Data analyses and development of R programs

 

Part 3: Modeling fish life history and fishery processes

(1)    Modeling fish growth: growth rates, growth models, growth transition matrix, analyzing tagging data for growth modeling, comparison of growth patterns between populations and sexes;

(2)    Modeling fish maturation: modeling length-specific proportion of fish maturity (for estimating length/age at maturity), modeling fish size-fecundity relationship;

(3)    Modeling length-weight relationship: comparing weight-length models;

(4)    Modeling fishing process: selectivity modeling;

(5)    Quantifying mortality rates;

 

 

高级应用班:

 

Part 1: CPUE standardizations

(1)   Selection of environmental variables;

(2)   Selection of models (general linear models and general abdicative models);

(3)   Statistical property of link functions;

(4)   Result interpretations;

(5)   Development of R programs.

 

Part 2: Per-recruit analyses

(1)   Age- and length-structured yield-per-recruit analyses;

(2)   Age- and length-structured egg-per-recruit analyses;

(3)   Estimating management/biological reference points;

(4)   Development of R programs.

 

Part 3: Production (biomass dynamic) models for stock assessment

(1)   Model structure and biological implications;

(2)   Process-error and observation-error estimators;

(3)   Estimation of management/biological reference points;

(4)   Development of R programs

 

Part 4: Stock-recruitment analysis

(1)   Recruitment and spawning stock biomass;

(2)   Stock-recruitment models, model structures, assumptions, and biolgical implications,

(3)   Stock-recruitment models incorporating environmental variables;

(4)   Estimating management/biological reference points using stock-recruitment models;

(5)   Development of R programs.

 

Part 5: Age-structured stock assessment models

(1)   Virtual Population Analysis (VPA);

(2)   Statistical age-structured models;

(3)   Development of R programs.

 

Part 6: Fisheries bioeconomics analysis

(1)   Fisheries bioeconomics theory and modelling;

(2)   Development of R programs.

 

Part 7: Case studies

(1)   Input data identification;

(2)   Model selections;

(3)   Stock assessment and estimation;

(4)   Sensitivity analysis;

(5)   Stock assessment report writing

(6)   Basic fish population dynamics models:

(7)    Development of R programs.

 

八、费用

基础提高班:2000

高级应用班:3000

备注:食宿自理,可帮联系住宿,住宿地点为上海海洋大学研究生交流与培训中心或上海海洋大学悦海宾馆。

 

九、联系人及报名回执

联系人:

龚彩霞

电话/传真:021-61900304

E-mail:cxgong@shou.edu.cn

 

田思泉

电话:021-61900221

传真:021-61900304

E-mail:sqtian@shou.edu.cn

 

 

上海海洋大学国际海洋研究中心

大洋渔业资源可持续开发省部共建教育部重点实验室

 

 

 

 

 

--------------------------------------------------------------------------------------------

 

报名回执

(请与47日前反馈)

 

姓名

学位/职称

单位

报名班级

E-mail

联系电话

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Baidu
sogou